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Motion of a classical particle with spin: 11. Calculation of 
Dirac brackets 

J R Ellis: 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton 
BN19QH, UK 

Received 3 December 1982 

Abstract. We continue the canonical formalism of paper I for the motion of a free particle. 
We establish by the use of a computer the relevant matrices necessary for the computation 
of all Dirac brackets. An algorithm is described which allots numerical values to the 
canonica! variables satisfying the constraints, and these values are used in the construction 
of the matrices. Algebraic expressions for Dirac brackets are predicted from a first set 
of numerical data, and these predicted expressions are confirmed by at least two further 
sets of data. Reduction to a sufficient set of variables is attempted and the reduced set 
expressed as a Lie algebra. 

1. Introduction 

In paper I (Ellis 1982) the classical covariant equations of motion of a free spinning 
particle with moments of inertia I,, were derived canonically from a degenerate 
Lagrangian. The degeneracy of the Lagrangian arose from the (necessary) introduction 
of Lagrange multiplier terms. Using Dirac’s method of canonical multiplier functions 
(Dirac 1964), modified to take account of the existence of first-order Lagrange 
equations (see e.g. Shanmugadhasan 1973), we derived the complete canonical formal- 
ism, with constraints, for these well known equations generalised to include asymmetry: 

p’ = 0 ,  S’” + 2p[’”X = 0, S@”X, = 0. 

The spin tensor s’“ had the structure given by the equations 
’” = -ce ’ “ A T  

ShXT,  S A  = SzUzA, SI = I l l W 1 .  

This canonical method for a degenerate Lagrangian, modified to take account of 
first-order Lagrange equations, is not especially well known and its application to the 
classical equations has not previously been attempted+. 

In this paper we carry out the detailed calculation of Dirac brackets (DBS). Paper 
I has already dealt with the problem in general, and has explained the calculation of 
the complete set of canonical constraints and the Hamilton equations for the model. 
The canonical constraints (called the set of subsidiary conditions on the canonical 
variables) are weak equations, and in I we derived the matrix of mutual Poisson 

I. This work was carried out in part while on leave of absence between October 1979 and September 1980. 
i Note added in final draft: the implications of a recent letter by Schafir (1982) are discussed in a footnote 
to 9 2 .  

@ 1983 The Institute of Physics 2967 



2968 J R Ellis 

brackets (PBS) of all these constraints and determined those that were second class:. 
The second-class constraints are identities with respect to the new brackets: it does 
not matter whether these constraints are used before or after the calculation of the 
new brackets, unlike the situation with regard to PBS. 

In I we found that the only first-class constraints were the zero momenta conjugate 
to the Lagrange multipliers whose values are not required for the derivation of the 
equations of motion. Thus these first-class variables and their conjugates drop out 
of consideration and we find the DBS for all other variables according to the definition 
of the bracket. (Note that in I iterative methods were not used in the calculation$.) 
This calculation of DBS appears to be straightforward, but complications arise from 
the actual task of computation, especially the calculation of the inverse of the large 
antisymmetrical submatrix of mutual PBS of the second-class constraints (I, table l),  
required in the definition of the DB. Since we are dealing with a relativistic model, 
a method for calculating the algebraic form of this matrix and of the DBS themselves 
must be found that does not destroy the manifest covariance of the model. Even if 
this calculation is possible, the task of finding certain DBS of the canonical variables 
may be too difficult, and consequently we may not be able to compute other DBS 

involving products of canonical variables by using the product rule for DBS; it is, 
therefore, advantageous to include some physical components among the variables 
whose DBS we wish to compute, in order that the DBS of these more difficult products 
may be computed. 

In the following calculation we have made use of a computer. This use is a novel 
one which, so far as we are aware, has not before been considered as a possible 
alternative to algebraic calculation. We use a computer to find both the pattern for 
the large matrix inverse and to predict algebraic values for DBS. Because of the 
constraint equations, we do not use completely arbitrary numerical values of the 
canonical variables, but values that are consistent with the constraints. Thus we make 
the computer carry out the right large-scale matrix operations numerically subject to 
these constraints (the process can be made automatic by the use of the random number 
generator) and we examine the output for equalities and relationships between the 
matrix elements. In this way we predict from the numerical values both the large 
matrix inverse and algebraic values for most of the DB relations. (The inverse has 
been confirmed conclusively by straightforward algebra, and the DB relations have 
been tested by comparison with further sets of numerical data$.) We thus sidestep 
the task of algebraic calculation and are able to reduce drastically the size of the 
algebraic problem. 

The numbers of variables used in these calculations are as follows: number of 
coordinates and velocities ( 2 n )  = 5 2 ;  number of subsidiary conditions on the canonical 
variables ( r 3 )  = 30; number of second-class constraints ( r 4 )  = 24. The number of 
independent combinations of canonical variables, sufficient for the description of the 

t First-class constraints have no effect on the equations of motion and correspond to rows and columns of 
zeros in the PB matrix. The submatrix of mutual PBS of the second-class constraints is of even dimensionality 
and non-singular, enabling the calculation of all the canonical multipliers corresponding to the second-class 
constraints to be made. The inverse of this submatrix is used in the definition of the DB (see below). 
1 We used non-iterative methods because of the existence of first-order Lagrange equations and because 
not all the velocities may be solved simply in terms of the coordinates and momenta. 
$This is, of course, not a mathematically conclusive test of the DB relations, but their agreement with 
further sets of data to an accuracy of about lo-@ makes it extremely unlikely that the predicted expressions 
are incorrect. 
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model, is 2nl where n l  = (number of degrees of freedom) - (number of first-class 
constraints). This number of variables is obtained by the elimination of certain 
variables using the second-class constraints provided we use only the new brackets, 
since these constraints are identities with respect to DBS. The number of degrees of 
freedom of the model is n -;r4 (this number includes the first-class variables and their 
conjugates). 

In 9: 2, we give the definition of the DB that involves the weak inverse of the 
submatrix of mutual PBS of the second-class constraints, as opposed to the strong 
inverse. We also give some properties of the DB. In 9: 3 we calculate by numerical 
methods the required weak inverse for the problem and compute the DBS of most of 
the canonical variables and combinations of variables that represent physical com- 
ponents. Also in $ 3  we attempt the reduction of the system to a sufficient set of 
variables. 

2. Definition and properties of the Dirac bracket 

In I we used a modified version of the multiplier formalism in which all of the 
constraints arose on an equal footing in the total Hamiltonian, and in which DBS were 
not calculated iteratively. The form of this theory required all the constraints to be 
known in advance+. Below we give the definition of the DB in which the weak inverse 
of the matrix of mutual PBS of the second-class constraints, as opposed to the strong 
inverse, is used. (The strong inverse is the inverse obtained without the use of the 
constraints (cf Hanson and Regge 1974).) 

Let 4A (A = 1 , 2 , .  , . , r4) denote the second-class constraints taken in any order, 
and multiplied by renormalising constants if necessary. Let H = Ho + U A ~ A  represent 
the total Hamiltonian, where the canonical multipliers uA are obtained from the 
consistency conditions as described in I. (These uA are appropriate multiples of the 

+ A  recent letter by Schafir (1982) has drawn attention to the controversy concerning the necessity (or 
otherwise) for including in the total Hamiltonian other constraints besides the primary constraints. The 
arguments in the present case are difficult to apply because of the complicated nature of the equations; 
but it is easy to see that in the spinless case (It, = 0), the usual iterative Dirac theory correctly gives the 
secondary constraint pup,, = m g 4 ,  starting from the single primary constraint no =O.  

In the non-spinless case (I,, # 0), which we primarily had in mind in I, we stated that it was ‘quite clear 
that the constraints (3.4) cannot be determined from (3.3) (the primary Constraints) using the current 
theory of multipliers’. This statement was unfortunately too strong. We ought to have said ‘it is not obvious 
that the constraints (3.4) can be determined.. .’, for in the case I,, f O  it is difficult (though perhaps not 
theoretically impossible) to express the Hamiltonian Ho = -p’i,, - n y i n u  - , . . -L in terms of coordinates 
and momenta without resorting to the ‘secondary’ constraints (3.41, which ought to be derived from Dirac’s 
theory. Because of this difficulty and because of the known work of Shanmugadhasan (1973), we took all 
the constraints on an equal footing, simplified Ho using them all, and allowed canonical multipliers for all 
the constraints in the total Hamiltonian. This method (which, of course, is perfectly legitimate provided 
all the constraints are known) amounts to the final stage of Dirac’s iterative procedure, where all the 
constraints have been found, except that since a weakly equivalent expression for Ho has been used in the 
total Hamiltonian, the ’secondary’ constraints may now have non-zero multipliers attached to them. We 
do not assert that this is the only way to do things; we merely state that the method of Shanmugadhasan 
appears to avoid the technical difficulties. Indeed, if, as now seems likely, the first-order Lagrange equations 
are nearly always theoretically derivable as secondary constraints from the usual iterative theory, starting 
from the primary constraints, his method seems a reasonable one to adopt. (In I, the Hamiltonian equations 
for the physical variables were checked independently against the Lagrangian ones, and all these equations 
were found to be correct.) 
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p’s, p”s and v’s already found in I. The r 3 - r 4  arbitrary multipliers multiplying the 
first-class constraints have been set to zero.) 

The canonical equation of motion (I, equation (4.4)) for any function g of the 
canonical variables and T is 

= ag/aT - {g, ~ 0 )  - {g, ~ A I u A ,  (2.1) 

since the PBS {g, uA} are multiplied by the 4’s which vanish weakly. The r4 consistency 
conditions are the conditions obtained from (2.1) by setting g equal to the r4 4’s in turn: 

(2.2) 

An expression representing the definition of the DB arises from (2.1) by eliminating 
the multipliers uc in terms of PBS from (2.2), as follows. Denote by C A B  the PB 

{#J~,  which is one element of the r4-dimensional submatrix C of the r3-dimensional 
matrix of mutual PBS of all the constraints calculated in I. This submatrix refers to 
the second-class constraints only and is necessarily non-singular. Denote by Ci; the 
elements of the (weak) inverse of C determined, using the second-class constraints if 
required, from 

c,’,cBC 2= SAC (2.3) 
(as usual, summation is implied by repeated capital letters for the range 1, , . . , r4). 
Contracting (2.2) with Ci;, we obtain 

0 = & = a4,Ia.r - M E ,  ~ 0 )  - M E ,  4C)uc. 

U A  = ~ i b  w B / a T  -ME, H ~ I ) ,  
and with these values the canonical equation of motion (2.1) for the function g 
becomes: 

dg1d.r -{g9 ~ A I C A L  ~ B / a 7  -({g, ~ o l - ~ g ,  ~ A I C A L ~ ~ B ,  ~ 0 ) ) .  (2.4) 
The term in parentheses represents the Dirac bracket (or the ‘modified’ or ‘restricted’ 
PB) of g and Ho. The DB of two functions e,? of the canonical variables is thus 
defined in terms of PBS and the weak inverse of C by the equation 

(2.5) 

The use of the second-class constraints in the elements of the inverse of C has no 
effect on either the DB or the equations of motion (2.4) other than that which is 
permitted by the adjoined subsidiary conditions. In the present calculation the second- 
class constraints do not explicitly depend on 7, and the second term of (2.4) vanishes. 
In this case the equation of motion for g is 

{e, TI* “{e, TI-{(, ~ A K ~ L { ~ B ,  TI. 

dg/dr = ag/aT - {g, H ~ } * .  (2.6) 

The DB (2.5) is defined in such a way that all the DBS of the second-class constraints 
4A with themselves and with any function T of the canonical variables vanish weakly, 
i.e. 

{dA, 4 B } *  = 0,  { 4 A ,  q}* = 0. 

+This  equation has been given by Shanmugadhasan (1973, equation (4.5)). where CiL denotes the strong 
inverse, and by Sudarshan and Mukunda (1974, p 104, equation (96)), where the weak inverse is used; 
Sudarshan and Mukunda omit T dependence but include terms arising from arbitrary multiples of the 
first-class constraints, which may without loss of generality be taken as zero, as already mentioned in I. 
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(‘Weakly’ here means by the use of the second-class constraints only, since their use 
is allowed in (2.3).) These relations show that the second-class constraints are identities 
with respect to the new brackets, and that it is immaterial whether the second-class 
constraints are used before or after working out the new brackets?. 

The DB (2.5) has all the properties of a Lie product binary operation (antisymmetry, 
linearity, Jacobi identity) together with a product rule similar to that found for PBS. 
There is also a ‘function of a function’ rule, as for PBS, where the elements in the 
bracket depend on several independent functions of the canonical variables. Thus 
the DB is the natural generalisation of the PB to be adopted in the Dirac correspondence 
when there exist independent constraints between the phase-space variables. 

3. The calculation of Dirac brackets 

3.1. The matrix of mutual Poisson brackets of the constraints 

In the canonical formalism the 2n canonical variables are the 26 coordinates x”, U: ,  

mo, Aoi,  Aij ( =Ai i )  and the 26 momenta pw, riw, no, no, TIii (= nji). The PB is defined 
with respect to all 26 pairs of canonical variables. In I we showed that the r3 subsidiary 
conditions on the canonical variables are the following 30 constraints (represented by 
weakly vanishing functions): 

def def 
4;j = upuj”++ij”o, X O ~  = moc u ” n ,  = O ,  

The notation U”,  si represents the four-velocity and the ‘internal components’ of spin 
defined as combinations of canonical variables: 

def 
2 ( A ”  = hoiuy), 

def 
U” = ( p ” + A @ ) / m o c  (3.2) 

(3 .3a)  

In addition, the following notation is used for the spin, orbital and total angular 
momentum tensors: 

A canonical spin four-vector is also defined: 

def 
s w  = siup. 

(3.3b) 

(3.4) 

+ W e  have replaced the symbol ’ = ’  in (2.6) by ’ = ’ in view of this fact. 
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The r3 -r4 first-class constraints are the six constraints "0 ,  the remaining 
constraints being second class. The simplified Hamiltonian (I, equation (4.2)) is 

~ ~ = - m d ~ + L  ZIPl -' SP,, (3.5) 
and the first-class Hamiltonian H, for which the n - (r3 -r4) pairs of Hamilton's 
equations lead to the correct equations of motion (by the use of the constraints), has 
also been calculated. 

The mutual PBS of all 30 canonical constraints (3.1) are derived and listed in I 
(table 1). The first-class nature of the functions q5ij is exhibited by the columns and 
rows of zeros adjacent to these functions in the table. The omission of these columns 
and rows from the table forms the 24-dimensional non-singular submatrix C, in which 
the rows and columns are those that correspond to the second-class constraints. The 
ordering and normalisation of these 24 second-class constraints are taken, for the 
definition of this matrix, to be 4A (A = 1, . . . ,24) :  q51, . . . , &, where the 4 ' s  represent 
the following consecutive groups of three constraints: c-'&,, tqib, cxo; q501,. . . ; 
4h1, . . . ; X O I ,  . . . ; di1, . . . ; 4L3, . . . ; x l l , .  . . ; 2xZ3, . . . . This order is convenient for 
finding the inverse. From the table of mutual PBS of the constraints given in I, and 
with this ordering and normalisation, the matrix C, partitioned into 16 square sub- 
matrices of dimension six, is 

/ a  P 0 o \  

where 
-AT 41 S , 

The notation used in the right-hand sides of these last five equations represents square 
matrices of dimension three, and E ,  T, 6, Al l ,  a, A12 and S12 are defined thus: E has 
1 and - 1 in its (1,2) and (2, 1) positions, T has components csi in its third row, 6 has 
components Aoi in its second row, Al has components - 2Aoi in its main diagonal, and 

-s3 s 2  

(3.7) 

(The antisymmetry of (3.6) can be shown from the antisymmetry of a, y and S.) 

3.2. Computation of C-' 
The calculation of the algebraic form of the inverse of the 24-dimensional matrix 
(3.6), simplified by using the constraints, is not an easy task to perform by conventional 
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means. We attempt this calculation by numerical means. An algorithm is used for 
allotting values to all the canonical variables (excluding the first-class variables and 
their conjugates) so that these values simultaneously satisfy all 24 second-class con- 
straint equationst. With these values a computer is then made to construct the matrix 
C and invert it. From the numerical values obtained we predict the precise algebraic 
form of the weak inverse, and this is checked algebraically. In the algorithm described 
below, the four-dimensional metric matrix diag( 1,  - 1,  - 1,  - 1) is denoted by G. 

The moving tetrad (x, U?) is represented by a real four-dimensional numerical 
Lorentz matrix U, created from a rotation dn* followed by a special Lorentz transfor- 
mation with velocity U = -c (tanh x); in which n* and o* are freely chosen, - T < 4 < T 

and ,y is chosen sufficiently small to prevent the problem from becoming ill conditioned. 
Six arbitrary parameters are involved in U. The arithmetic is such that UTGU and 
G differ by quantities not exceeding When this is achieved, the sixth equation 
of (3.1) is verified for these values of U? to within the desired accuracy. Four 
parameters formed by the row matrix of four elements L = (moc2, A O I ,  h02, h03) are 
c h o s e n , w h e r e m ; ~ ~ > / A 1 ~ , O < m o c ~ < 3  and - l<hoi  < 1. Therowmatr ixP=LU-’G 
represents p w ,  and this is computed. This enables an arithmetical check to be performed 
on the first column of U (representing x w )  and on the fourth and fifth constraints of 
(3.1). There remain two parameters that have not yet been fixed. These are taken 
to be the first two components of s = (csl ,  cs2, cs3), chosen arbitrarily between - 1 
and 1. The third component is computed from the ninth constraint of (3.1). The 
computation of the T ’ S  is made from the equation d‘ = 4s A U” (I, appendix 2). By 
using these components, we construct the square matrices 

Provided the elements of ‘vy do not differ from those of UTGV by quantities exceeding 
this ensures that the remaining seventh and eighth constraints of (3.1) are satisfied 

to within the desired accuracy. 
This algorithm uses 12 arbitrary parameters$ and thus produces the values of all 

the canonical variables (excluding the four x’s, which are not used, and the four n’s, 
which are already zero from the constraints (3.1)). Numerical values of the canonical 
variables are obtained from the matrices U, V, W. The matrix W is used directly in 
computing the elements of (3.6), whose inverse is then computed. We predict a 
general algebraic expression for the inverse, and by partitioning this matrix into 
submatrices of dimension six we find all the elements of the weak inverse: 

(3.8) 

t The matrix (3 .6)  contains only some of the canonical variables, and we require an algorithm for creating 
arbitrary values of these subject only to ,yo since this second-class constraint is the only one restricting the 
choice of these variables. The more general algorithm is described which allots arbitrary values to all the 
canonical variables subject to all the second-class constraints, since this algorithm is required later in the 
calculation of DBS. 
$These arbitrary parameters and the x ’ s  correctly number 2nl = 16. 
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The capital letters represent square matrices of dimension six: 

The notation used in the right-hand sides of these six equations represents square 
matrices of dimension three, and, in addition to the matrices listed previously, K has 
moc2A A S  and s for its first and third rows, t) has A for its first row ( A  denotes the 
triple ( A o l ,  Ao2,  Ao3)). The matrix (3.8) has been verified algebraically. 

3.3. The computation of DBS 

For any two canonical variables (or functions of canonical variables) 5, q, the DB is 
defined by 

(5, V I *  =E, 771+6c-'t1T (3.9) 

from (2.5), where C-' is the weak inverse (3.8), and 6 and t) denote 24-element row 
matrices whose elements are the PBS of 5 and q with the 24 second-class constraints. 
The variables 5 and q are taken in turn to be the canonical variables x a ,  p a ,  U?, T?, 
mac , c-'ll0, Aoi,  IIoi and the combinations (3.3), which represent physical components. 
These variables are the ones whose PBS with the second-class constraints are required. 
The PBS of the combinations (3.3) with the second-class constraints are obtained from 
the other PBS by using the product rule (for PBS). The calculation of DBS is not 
especially complicated by having an extra number of variables and PBS since the new 
variables and PBS merely represent further data in the computer calculation. 

We omit the list of PBS of the canonical variables and special combinations with 
the second-class constraints, and give only those non-zero PBS of the x 's  and p ' s  that 
enable us to calculate the corresponding DBS algebraically: 

2 

I x " 7 4 i ) = ( O I ~ P + A  *u" ,O) ,  Ix", 4 3 )  = ua, {x", 4'$} = ma. 

Each DB (3.9) is the sum of a PB and a scalar computed by matrix multiplication. 
This scalar is the sum of 24 + 24' = 600 products of elements, and it may be simplified 
by using any of the second-class constraints. Some of these products are zero, but 
the algebraic task is formidable. The computer calculates the 61 -dimensional matrix 
of scalars 6C-'gT (some of these are redundant; many are zero), and the algebraic 
results predicted from the numerical ones are listed in table 1 below. 

Since the mutual PBS of the x's and p ' s  vanish, their DBS likewise vanish by table 
1, and this is confirmed by the algebraic calculations referred to. All other results in 
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Table 1. The difference {(, q}*-{(, q} as computed from numerical values of the scalar 
(C- ' 7 *. 

r 

P" 0 1 0 0 0 0 

r r N  
m 

o 
o 

table 1 are predicted from the numerical ones:. This table represents the quantities 
that must be added to PBS in order to convert PBS into DBS. Some expressions have 
not been found (represented by dashes in the table). A complete block of 36 zeros 
has been found for the variables x ' ,  p a  and the special combinations (3.3). Three 
blocks are suppressed because of antisymmetry, and some other values in two blocks 
are likewise suppressed. The values vo, are the canonical multipliers found in I. 

These formulae may be re-expressed by using any weak second-class equivalent 
formulae. This is because the second-class constraints have vanishing DBS with the 
canonical variables and their functions, and are identities in the DB formalism (the 
symbol ' = ' is replaced by ' = ' in this formalism, the second-class constraints becoming 
strong equations). Thus certain rows and columns of the table could be inferred from 
other rows and columns, e.g. the columns for ho, and m o c 2  could be inferred from 
those for p" and U," using 

AoJ  =paUJcrt m;c4  = p a p u  +Ao,Ao, (3.10) 

(I, equation (A2.1)). We have been unable to establish the mutual DBS of the U ' S  

and T ' S ,  so we retain these columns. In contrast, the columns for C2ll0 and no, are 

+ Non-zero values in the blocks have been analysed by choosing the 12 parameters arising in the matrices 
U, V,  W in a special way. By making special choices (e.g. = (f. $, i)) it is possible to identify values in 
the blocks that are proportional either to four-vectors or to Lorentz-invariant triples. The 0's and 1's in 
the table have been established by repeated use of the random number generator to assign the 12 parameters. 
The algebraic expressions given in table 1 have all been verified in subsequent runs. 
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quite unnecessary since it is known already that their DBS with all the canonical 
variables vanish, since they themselves vanish, being second-class constraint functions. 
The non-zero values in these columns confirm this. 

The numerical results indicate that the mutual DBS of unequal U ’ S  do not vanish. 
(Corben’s simple assumptions of vanishing brackets for these variables (1968, p 255)  
appear not to apply.) None of the DBS of the U ’ S  with the A’s vanishes, but some of 
the mutual DBS of the T ’ S  do. 

3.4. PES and DBS of position, momentum and the special combinations 

Because the 36 elements of the first block of table 1 all vanish, the DBS of these 
variables are the same as their corresponding PBS. In table 2 below, we give this list 
of PBS (and hence DBS). Note that no algebraic calculations for DBS have been 
performed other than those for the x ’ s  and the p’s.  

Table 2. DBS of x u ,  p a  and the special combinations (3.3). 

x + } *  p ” } *  m””)*  S +”}* ai}* j ” ” } *  

The canonical p a  and j a P  generate the translations and the Lorentz rotations of 
the 10-parameter PoincarC group and it is not surprising that the DB relations for 
these variables are identical to the basic Lie bracket relations for the PoincarC group: 

(3.11) 

However, the vanishing of the mutual DBS of the x’s does not also follow from simple 
assumptions (cf the treatment of Hanson and Regge (1974) which, though leading to 
(3.11), does not lead to vanishing mutual DBS of the x’st). 

The generators in (3.1 1) may be realised by differential operators, the bracket 
relations (3.1 1) being interpreted as commutation relations ({ }* + [ , I). For table 2 

f Because a different condition of spin is used which effectively allows only straight-line motion in the 
field-free case, Hanson and Regge’s treatment does not lead to vanishing DBS of the x ’ s .  Transformation 
of the x’s to Pryce-Newton-Wigner variables (Pryce 1948, Newton and Wigner 1949) avoids substantial 
quantum ordering problems and leads to the vanishing of the brackets for the space parts of the new 
variables only. In contrast to their treatment, none of the DBS given here requires the transformation and 
all are fully covariant. The six operators of (3.12) for suo appear to generalise three non-covariant operators 
found by Hanson and Regge (1974, p 536, formula (3.73)) after the transformation to Pryce-Newton-Wigner 
variables. The covariant operators (3.12) demonstrate how spin may be included in the differential 
representation of an asymmetric particle, generalising the representation for x ’ s  and p ’ s .  
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we have 

1-1, x u  + x u ,  p a  - - a / a x a ,  saB + - (u fa /au ia  -uqa/auiB),  

CS(  + -EijkU;a/auZ, 
(3.12) 

These are connected by constraint equations. Thus the PoincarC group is insufficient 
for the complete canonical description of the free particle equations. The canonical 
theory of DBS is an essential process for constructing the classical formalism. 

muB + - ( x B a / a x a  - x a a / a x , ) .  

3.5. Reduction of the system to a sufficient set of variables 

The second-class constraints allow us to find values of many DBS from others, and we 
may attempt to reduce the system to a sufficient set of variables. A certain reduction 
has already been achieved in deducing the algorithm that allots values to the canonical 
variables from 2nl = 16 parameters?. However, it is feasible to try to find a reduced 
system that has some of the properties of a Lie algebra. Table 2 is not quite sufficient 
for the purposes of representing all the canonical variables using the second-class 
constraints. Below we give the number of independent functions already existing in 
the table and attempt to find the independent functions which form the maximum 
number for the canonical system. 

The number of independent functions of table 2 is 15% These functions must be 
supplemented by 2nl - 15 = 1 further independent variable, and it is clear that this 
variable must arise from the A ’ s  since these are not completely determined from the 
variables of table 2 by using the constraints. There is no convenient single variable 
that may be adjoined to the table in such a way that this observable forms, with the 
others, a Lie algebra. The best we can achieve is to assign all three A ’ s  subject to 
two constraint equations (this would require knowledge of the complete table of DBS). 
Without the A ’ s ,  17 functions x u ,  p‘, saB,  csi, when supplemented by the element 1, 
form a Lie subalgebra in which there exist two constraint equations-conveniently, 
equations connecting the Casimir invariants: $sa’saB = c2sisi, = 0.  These reduce 
the system to 15 independent functions (and the unit element). We have justified this 
fact in the footnote by listing the constraints that involve these variables. 

4. Conclusion 

The canonical theory presented here is somewhat different from those that seek to 
construct (rather than to derive) canonical formalisms from a symmetry group (e.g. 
the so-called ‘canonical realisations’ of the Galilean, PoincarC, and other groups: see 
e.g. Pauri and Prosperi (1975) and the method of constructing a canonical formalism 

t The six first-class functions n,, and their six conjugates A,, correctly increase the number of observables 
for this representation from 16 to 28, the model having 14 degrees of freedom. 
$ The number of independent functions already existing in the table is obtained thus. The three functions 
s, may be considered to be adjoined to the others of table 2 in such a way that C’SJ, = ~s”’snB so that we 
have effectively only two functions adjoined to the other functions p a ,  sa’ of table 2, in terms of which 
the only other condition imposed by the second-class constraints is the single condition sa’s& = 0, effectively 
reducing the six functions sa’ to five. (This condition arises essentially from the Frenkel condition of spin 
as a result of an identity which already holds for any antisymmetric tensor: ~ s ~ ~ s , ~ s , , ,  + S / S ~ ~ S ’ ~  = 
ass@,* s *  as ,,,,.) These two conditions are the only conditions imposed by the constraints on the variables of 
table 2, and the independent functions of the table number 15: x u  (four functions), p a  (four functions), 
sa’ (five functions), cs, (two functions). 
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from a symmetry group summarised by Mann (1974)). In these theories (i) the PB is 
almost universally accepted as agreeing with the Lie bracket and (ii) the contact 
between the physical system and the abstract algebraic formalism is made essentially 
by postulate (or even by guesswork), e.g. for the energy, momentum and angular 
momentum observables. 

In the canonical formalism given here, we have derived the algebraic structure 
from the physical, and it is evident that the elements of Poincare algebra are insufficient 
for a complete canonical description for the motion of a free particle with spin. Our 
formalism is, therefore, unlike those constructions that include spin in the realisations 
of the Poincare group. Our formalism requires the use of constraint equations, which 
are not found in conventional theories. 

We can give some comparisons between this work and the postulated formalism 
of Corben (1968). The previous theory lacked the means for accurate derivation of 
the brackets and certain inconsistencies developed in these treatments, which were 
based largely on postulation of certain fundamental brackets. The present treatment 
appears to provide the only means for deriving the bracket relations accurately for 
the model. 
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